Plant-Derived Antimicrobials Reduce E. coli O157:H7 Virulence Factors Critical for Colonization in Cattle Gastrointestinal Tract In Vitro

نویسندگان

  • Sangeetha Ananda Baskaran
  • Kumar Venkitanarayanan
چکیده

This study investigated the effect of subinhibitory concentrations (SIC) of five plant-derived antimicrobials (PDAs), namely, trans cinnamaldehyde, eugenol, carvacrol, thymol, and β-resorcylic acid, on E. coli O157:H7 (EHEC) attachment and invasion of cultured bovine colonic (CO) and rectoanal junction (RAJ) epithelial cells. In addition, PDAs' effect on EHEC genes critical for colonization of cattle gastrointestinal tract (CGIT) was determined in bovine rumen fluid (RF) and intestinal contents (BICs). Primary bovine CO and RAJ epithelial cells were established and were separately inoculated with three EHEC strains with or without (control) SIC of each PDA. Following incubation, EHEC that attached and invaded the cells were determined. Furthermore, the expression of EHEC genes critical for colonization in cattle was investigated using real-time, quantitative polymerase chain reaction in RF and BICs. All the PDAs decreased EHEC invasion of CO and RAJ epithelial cells (P < 0.05). The PDAs also downregulated (P < 0.05) the expression of EHEC genes critical for colonization in CGIT. Results suggest that the PDAs could potentially be used to control EHEC colonization in cattle; however follow-up in vivo studies in cattle are warranted.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of Escherichia coli O157:H7 virulence factors in colonization at the bovine terminal rectal mucosa.

The human pathogen Escherichia coli O157:H7 causes hemorrhagic colitis and life-threatening sequelae and transiently colonizes healthy cattle at the terminal rectal mucosa. This study analyzed virulence factors important for the clinical manifestations of human E. coli O157:H7 infection for their contribution to the persistence of E. coli in cattle. The colonizing ability of E. coli O157:H7 was...

متن کامل

Meat Science and Muscle Biology Symposium: Preharvest factors affecting the prevalence of pathogens in livestock and meat.

Shiga-toxigenic Escherichia coli, such as E. coli O157:H7, are foodborne zoonotic pathogens that can cause severe illness and death in humans. The gastrointestinal tract of ruminant animals has been identified as a primary habitat for E. coli O157:H7, and in cattle the terminal gastrointestinal tract appears to be a primary site for colonization. This pathogen has been found in cattle feces, on...

متن کامل

Prevalence of Virulence Genes of Escherichia Coli O157:H7 Isolated from Patients with Urinary Tract Infections in Shiraz, Iran

Abstract Background and Objective: Escherichia coli O157:H7 is one of the most well-known pathogenic bacteria worldwide that can develop severe diseases such as hemolytic uremic syndrome (HUS). This study aimed to assess the prevalence of virulence genes of E. coli O157:H7 in patients with suspected urinary tract infections (UTIs). Material and Methods: This cross-sectional study was co...

متن کامل

Escherichia coli O157:H7 colonization at the rectoanal junction of long-duration culture-positive cattle.

Long-duration consistently Escherichia coli O157:H7 culture-positive cattle were euthanized and necropsied. Tissue and digesta from along the gastrointestinal tract (GIT) were cultured for the bacteria and examined histologically for lymphoid character. E. coli O157:H7 was detected only at the rectoanal junction mucosa and not at any other GIT location.

متن کامل

Changes in bacterial community composition of Escherichia coli O157:H7 super-shedder cattle occur in the lower intestine

Escherichia coli O157:H7 is a foodborne pathogen that colonizes ruminants. Cattle are considered the primary reservoir of E. coli O157:H7 with super-shedders, defined as individuals excreting > 104 E. coli O157:H7 CFU g-1 feces. The mechanisms leading to the super-shedding condition are largely unknown. Here, we used 16S rRNA gene pyrosequencing to examine the composition of the fecal bacterial...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2014  شماره 

صفحات  -

تاریخ انتشار 2014